

PROJECT REPORT

Data Structures and Algorithms

(UCS406)

CSS Minifier & SCSS Preprocessor

By

Prakhar Gupta 101610066

Nikhil Jain 101603206

Prateek Chhikara 101603237

Ishan Sharma 101783059

Computer Science & Engineering Department

Thapar Institute of Engineering and Technology, Patiala

May 2018

TABLE OF CONTENT

S.No. Title Page no.

1 Problem Formulation……………………………………….…

1.1 Minifying CSS………………………………………….….

1.2 SCSS Preprocessor…………………………………….….

1

1

1

2 Analysis of Problem……………………………………….….

2.1 Problem 1: CSS Minifier……………….………………….

2.1.1 Overview…………………………………………….

2.1.2 How minification works? ..

2.2 Problem 2: SCSS Preprocessor…………………..……….

2.2.1 Overview…………………………………..………..

2.2.2 Variables…………………………………………….

2.2.3 Nesting………………………………………………

2

2

2

3

3

3

4

5

3 Data Structure and Algorithmic Technique ……… …………

3.1 Data Structures Used……………………………………..

3.2 Algorithmic Technique…………………………………..

6

6

6

4 Methodology………………………………………………….

4.1 Insertion Function………………………………………..

4.2 Push function in stack…………………………………….

4.3 Pop function in stack………………………………………

4.4 Display Function…………………………………………..

4.5 Inorder Traversal Function………………………………..

4.6 Hash Functions for variables………………………………

4.7 Push and Pop Functions……………………………………

7

8

8

8

9

9

10

12

5 Test Cases……………………………………………………...

5.1 Minifying CSS……………………………………………..

5.2 SCSS Preprocessor………………………………………..

14

14

15

6 Results and Conclusion……………………………….………

6.1 CSS Minifier……………………………………………….

6.1.1 Benefits of minification……………………………...

6.1.2 Conclusion…………………………………………...

17

17

17

17

 6.2 SCSS Preprocessor……………………….………………

6.2.1 Conclusion………………………………………….

17

17

7

References…………………………………………………….

18

1

Section 1

1. Problem Formulation

1.1 Minifying CSS

It is the process of minimizing code and markup in your web pages and script files. It’s one of the

main methods used to reduce load times and bandwidth usage on websites. Minification dramatically

improves site speed and accessibility, directly translating into a better user experience. It's also

beneficial to users accessing your website through a limited data plan and who would like to save on

their bandwidth usage while surfing the web.

1.2 SCSS Preprocessor

Sassy Cascading Style Sheet (SCSS) Preprocessor used to convert a SCSS file to CSS file using

preprocessing. CSS on its own can be fun, but style sheets are getting larger, more complex, and

harder to maintain. This is where a preprocessor can help. Syntactically Awesome Style Sheet

(SASS) lets you use features that don't exist in CSS yet like variables, nesting, mixings, inheritance

and other nifty goodies that make writing CSS fun again. Once you start tinkering with Sass, it will

take your preprocessed Sass file and save it as a normal CSS file that you can use in your website.

2

Section 2

2. Analysis of Problem

2.1 Problem 1: CSS Minifier

Minified source code is especially useful for interpreted languages deployed and transmitted on the

Internet, because it reduces the amount of data that needs to be transferred. In programmer culture,

aiming at extremely minified source code is the purpose of recreational code golf competitions.

When creating HTML, CSS and JavaScript (JS) files, developers tend to use spacing, comments and

well-named variables to make code and markup readable for themselves. It also helps others who

might later work on the assets. While this is a plus in the development phase, it becomes a negative

when it comes to serving your pages. Web servers and browsers can parse file content without

comments and well-structured code, both of which create additional network traffic without

providing any functional benefit.

So, the following points must be covered by CSS Minifier.Removes useless white spaces,

indentation characters and line breaks.

1. Strips all comments

2. Removes empty CSS declarations

3. Keeps a single charset per CSS file removing all extra declarations

4. Do not differentiate between uppercase and lowercase.

5. Do not replace CSS rules which has more importance.

2.1.1 Overview

When it comes to generating a page or running a script, web browsers aren’t concerned about the

readability of code. Minification strips a code file of all data that isn’t required for the file to be

executed. Unlike traditional compression techniques, minified files don’t need to be decompressed

before they can be read, modified or executed.

3

Minification is performed after the code for a web application is written, but before the application is

deployed. When a user requests a webpage, the minified version is sent instead of the full version,

resulting in faster response times and lower bandwidth costs. Minification is used in websites

ranging from small personal blogs to multi-million user services.

2.1.2 How Minification Works

Minification works by analyzing and rewriting the text-based parts of a website to reduce its overall

file size. Minification extends to scripts, style sheets, and other components that the web browser

uses to render the site.

Minification is performed on the web server before a response is sent. After minification, the web

server uses the minified assets in place of the original assets for faster distribution to users.

Here’s a step-by-step description of how minification works:

1. A web developer creates a JavaScript or CSS file to be used in a web application. These files are

formatted for the developer’s convenience, which means they make use of whitespace,

comments, long variable names, and other practices for readability.

2. The developer applies a minification technique (see below) to convert the file into one that’s

more optimized, but harder to read. Common minification techniques include removing

whitespace, shortening variable names, and replacing verbose functions with shorter, more

concise functions.

3. The web server uses the minified file when responding to web requests, resulting in lower

bandwidth usage without sacrificing functionality.

The benefit of minification is that it only needs to be performed when the source file changes. When

combined with other compression techniques, minification can greatly reduce bandwidth usage for

both the enterprise and the user.

2.2 Problem 2: SCSS Preprocessor

2.2.1 Overview

Sass consists of two syntaxes. The original syntax, called "the indented syntax", uses a syntax

like HTML. It uses indentation to separate code blocks and newline characters to separate rules. The

newer syntax, "SCSS", uses block formatting like that of CSS. It uses braces to denote code blocks

4

and semicolons to separate lines within a block. The SCSS files are traditionally given

the extensions. SCSS, respectively.

SCSS is a nested meta language, as valid CSS is valid SCSS with the same semantics. Sass supports

integration with the Firefox extension Firebug.

SCSS Script provides the following mechanisms: variables, nesting etc.

2.2.2 Variables

Variables begin with a dollar sign ($). Variable assignment is done with a colon (:).

Sass Script supports four data types:

 Numbers (including units)

 Strings (with quotes or without)

 Colors (name, or names)

 Booleans

Variables can be arguments to or results from one of several available functions. During translation,

the values of the variables are inserted into the output CSS document.

In SCSS style

$primary-color: #3bbfce;

$margin: 16px;

.content-navigation {

Margin-left: $margin;

color: $primary-color;

}

Would compile to:

.content-navigation {

Margin-left: 16px;

color: #3bbfce;

}

5

2.2.3 Nesting

CSS does support logical nesting, but the code blocks themselves are not nested. Sass allows the

nested code to be inserted within each other.

In SCSS style-

table.hl {

margin: 2em 0;

td.ln {

text-align: right;

}

}

Would compile to:

table.hl {

margin: 2em 0;

}

table.hl td.ln {

text-align: right;

}

6

Section 3

3. Data Structure and Algorithmic Technique

3.1 Data Structures Used

Following Data Structures are used-

1. Binary Search Tree(BST)

 BST is used for selection of class, id, simple tags etc.

2. Linked List

 Linked List is used to store declarations which consists of properties and values of the

class.

3. Stack as a Linked List

• Statements such as @import:url(“abc.txt”) are encountered then we need to store

them separately, that’s why we are using stack as a Linked List. Preprocessor also

uses 2 stacks, one for storing selector (Doubly LL) and other for decleation(Singly

LL)

4. HashMap<String,String> map=new HashMap<>()

• It’s used to store the variable as key and their corresponding value as value. If we are

in state of storing variable, say $var1:12px; then key is $var1 and value is 12px. If key

is encountered in declaration, then it is replaced by its corresponding value. HashMap

is used because it has O (1) complexity for both set() and get() function.

3.2 Algorithmic Techniques

BST consists of following fields-

Selector Name (i.e. class/id) and address of the head of the Linked List. The head of the linked list

stores the declaration of this selector (i.e. either left or right node of the root).

When a node is encountered then it is compared lexicographically and stored according to properties

of BST. However, we also need to find that if selected already exists, then new selector with same

name should not be created, if that selected already exists then append new declarations to linked list

whose head is stored in this BST node.

7

Section 4

4. Methodology

4.1 Insertion Function

1. BSTNode insert(BSTNode root1, String name, StyleNode d)

2. if(root1 == null) //If root is null

3. root1 new BSTNode(name)

4. root1.datad

5. else if(((root1.name).compareTo(name))=0) // if class found

6. if(root1.data == null)

7. root1.data d

8. else

9. StyleNode ptr root1.data //else create new BSTnode

10. StyleNode prev null

11. while(ptr!=null)

12. if(((ptr.property).compareTo(d.property))=0) //if style property found

13. Prev ptr

14. Ptr ptr.next

15. if(ptr == null)

16. prev.next d

17. else

18. if(d.isimp || (!d.isimp && !ptr.isimp)) //Check importance and then override

19. ptr.value d.value;

20. if(d.isimp)

21. ptr.isimp = true

22. else if(((root1.name).compareTo(name))>0)

23. root1.leftinsert(root1.left,name,d)

24. else

25. root1.rightinsert(root1.right,name,d)

26. return root1

Time Complexity= O(n+logN) = O(n)

Space Complexity = O(n + N)

8

4.2 Push Function in Stack of Minifier

1. int push(item){

2. if stack is full

3. return null

4. else

5. toptop+1

6. stack[top] item}

Time Complexity= O (1)

Space Complexity = O(n)

4.3 Pop Function in Stack of Minifier

1. void pop(){

2. if stack is empty

3. return null

4. else

5. item stack[top]

6. toptop-1

7. }

Time Complexity= O (1)

Space Complexity = O(n)

4.4 Display Function

1. void displayLL1(head)

2. while(head != null)

3. if(head.isimp)

4. print(head.property+":"+head.value+"!important"+";")

5. else

6. print(head.property+":"+head.value+";")

7. Head head.next

Time Complexity= O (n) & Space Complexity = O (1)

9

4.5 Inorder Traversal Function

1. void Inorder(root)

2. if(root=NULL)

3. return

4. else

5. Inorder(root →left)

6. Print classname & DisplayLL(root →data)

7. Inorder(root →right)

Time Complexity= O (n)

Space Complexity = O(n)

4.6 Hash Function for Variables

String variable(String str)

1 int i<-0

2 int state<-1

3 String part1<-part2<-""

4 HashMap<String, String> map <- new HashMap<>()

5 while(i<str.length())

6 char ch<-str.charAt(i)

7 if(ch=’{’) // state =2 is state in which we replace key by value

8 state<-2

9 if(ch=’}’) //state =1 is state in which we add key value pair to hashmap

10 state<-1

11 if(ch='$')

12 if(state=1)

13 part1<-""

14 while(i<str.length()&&ch!<-‘;’)

10

15 part1+<-ch

16 ch<-str.charAt(++i)

17 String [] arrOfStr <- part1.split(":", 2)

18 map.put(arrOfStr[0].trim(),arrOfStr[1].trim())

19 if(state=2)

20 part2<-""

21 int end3 <- 0

22 int start3 <- i

23 while(i<str.length()&&ch!<-'')

24 part2+<-ch

25 ch<-str.charAt(++i)

26 end3 <- I

27 part2<-part2.trim()

28 if (map.containsKey(part2))

29 String a <- map.get(part2)

31 str <- str.substring(0,start3)+ a+ str.substring(end3)

34 else

35 i++

36 str <- str.replaceAll("\\$.*?","")

37 return str

Time Complexity= O (1) & Space Complexity = O(n)

4.7 Push and Pop Functions

1. void popclass()

2. if(classtop!=null)

3. printf()

11

4. className ptrclassbottom

5. while(ptr!=null)

6. printf(ptr.name+" ")

7. ptr ptr.next

8. classtop = classtop.prev

9. if(classtop!=null)

10. classtop.nextnull

Time Complexity= O (1) & Space Complexity = O(n)

1. void popclass()

2. if(classtop!<-null)

3. System.out.println()

4. className ptr <- classbottom

5. while(ptr!<-null)

6. System.out.print(ptr.name+" ")

7. ptr <- ptr.next

8. classtop <- classtop.prev

9. if(classtop!<-null)

10. classtop.next<-null

Time Complexity= O (n) & Space Complexity = O(n)

void pushprop(String s,char c)

1. Node temp <- new Node(s,c)

2. if(Nodetop = null)

3. Nodetop <- temp

4. else

5. temp.next <- Nodetop

6. Nodetop <- temp

1. void popprop()

2. if(Nodetop = null)

3. return

4. else

12

5. Node ptr<- Nodetop

6. System.out.print("\n"+ptr.prop+"")

7. Nodetop <- Nodetop.next

4.8 Nesting Function

1. void nesting(String path)

2. String s<- Content of file(path)

3. s <- variable(s) // call variable function and preprocess all variables

4. s <- s.replaceAll("\\/*.*?*\\/", "") //replace comments

5. s <- s.replaceAll("\r\n +\t", ""). trim().toLowerCase()\\ replace newline and extra space

and convert to lowercase

6. int i<-0

7. String Parentname <- null

8. int start<-0,end <-0,end1<-0,child1<-0,count <- 0,start1<-0,flag <- 0

9. while(i<s.length())

10. if(s.charAt(i)=’{’ && flag = 0)

11. pushprop(null,'')

12. end<- i-1

13. Parentname <- s.substring(start,end+1)

14. Parentname <- Parentname.trim()

15. pushclass(Parentname)

16. flag <- 1

17. start1 <- i+1

18. else if(s.charAt(i) = ';')

19. end1<-i-1

20. String prop <- s.substring(start1,end1+1)

21. prop <- prop.trim()

22. pushprop(prop,'\0')

23. start1 <- i+1

24. else if(s.charAt(i)='{' && flag = 1)

25. pushprop(null,'')

26. end1<- i-1

27. String childname <- s.substring(start1,end1+1)

13

28. childname <- childname.trim().replaceAll("\r\n +\t", "")

29. start1 <- i+1

30. count++

31. else if(s.charAt(i)='}' &&count !<-0)

32. start1 <- i+1

33. count--

34. popclass()

35. System.out.print("")

36. while(Nodetop.ch !<- '')

37. popprop()

38. System.out.print("\n")

39. Nodetop <- Nodetop.next

40. System.out.println()

41. else if(s.charAt(i)='}' &&count =0)

42. start <- i+1

43. int check <-0

44. if(Nodetop.next!<-null)

45. check <-1

46. System.out.print("\n")

47. popclass()

48. System.out.print("")

49. while(Nodetop.ch !<- '')

50. popprop()

51. System.out.println("\n")

52. Nodetop <- Nodetop.next

53. if(check = 0)

54. classtop <- classtop.prev

55. if(classtop!<-null)

56. classtop.next<-null

57. flag <-0

58. i++

Time Complexity= O (N+n) & Space Complexity = O(N + n)

14

Section 5

5. Test Cases

5.1 CSS Minifier

Input-

Figure 5.1 (a) Input to CSS Minifier

15

Output-

Figure 5.1 (b). Output of CSS Minifier

5.2 SCSS Preprocessor

Input-

Figure 5.2 (a). Input to SCSS Preprocessor

16

Output-

Figure 5.2 (b). Output of SCSS Preprocessor

17

Section 6

6. Results and Conclusion

6.1 CSS Minifier

6.1.1 Benefits of Minification

1. Users load content faster as less unnecessary data needs to be downloaded. Users experience

identical service without the additional overhead.

2. Businesses see lower bandwidth costs as less data is transmitted over the network. The extra

content that only developers care about is no longer being sent to users.

3. Businesses also see lower resource usage since less data needs to be processed for each request.

The minified content – which only needs to be generated once – can be used for an unlimited

number of requests.

6.1.2 Conclusion

Minification is a fast and easy way to reduce a web application’s resource usage. Even with standard

compression techniques, minification can improve the time needed to render a page by over

60%. Minifying your website can lead to large performance gains without compromising your users’

experience. Time complexity of our minifier is O(log N +n) where N is number of selectors and n is

number of style rules/decorations. Space complexity is O(N+n)

6.2 SCSS Complier

6.2.1 Conclusion

Once this software is installed, you can compile your SCSS to CSS using the SCSS command.

You’ll need to tell SCSS which file to built from, and where to output CSS to. For example, running

SCSS input.scss output.css from your terminal would take a single SCSS file, input.scss and compile

that file to output.css. Time complexity of SCSS compiler of our project is O(N + n) and space

complexity is O(N+n) ,) where N is number of selectors and n is number of style rules/decorations.

18

Section 7

7. References

[1] What is Minification | Why minify JS, HTML, CSS files | CDN Guide | Incapsula [Online]

Available: https://www.incapsula.com/cdn-guide/glossary/minification.html [Accessed May
10, 2018].

[2] CSS Minifier [Online] Available: https://cssminifier.com/ [Accessed May 10, 2018].
[3] What is Minification? | StackPath Blog [Online] Available: https://blog.stackpath.com/

glossary/minification/ [Accessed May 10, 2018].
[4] Sass: Sass Basics, [Online]. Available https://sass-lang.com/guide [Accessed May 10,

2018].

[5] Pattern (Java Platform SE 6), [Online]. Available: https://docs.oracle.com/javase/6/docs/

api/java/util/regex/Pattern.html [Accessed May 10, 2018].

